
REBOTNIX VISIONTOOLS

Identifying object recognition errors
in datasets and AI models.
Version 1.0
Gary Hilgemann , 02.02.2023

Preface

This document is addressed to users who use REBOTNIX VISIONTOOLS in their daily work.
https://rebotnix.com/visiontools

The new VISIONTOOLS Model Analyzer Model is a framework for analyzing error sources in
object recognition and segmentation algorithms. This plugin also exists as a plugin with
graphical interface with a service connection to the REBOTNIX Low Energy Data Center or
as a local installation (onPremise).

The framework is applicable across models and can handle predictions in already created
models and weights without the need to know the underlying prediction system beforehand.
It can be applied to pre-trained models and applied subsequently at any time by adding a
new arbitrary number of GT, also called ground truth.

The best models for new data sets can be identified. Weaknesses in data sets are visualized
in VISIONTOOLS.

The prediction system

VISIONTOOLS MA can be used as a substitute for a standard mAP calculation while
providing a comprehensive analysis of the strengths and weaknesses of individual models.

We divide the faults into six types and use a new technique to measure the individual fault of
each fault in a way that isolates its impact on overall performance per weight generated.

We show that such an analysis is crucial to draw and prove accurate, comprehensive
conclusions.

https://rebotnix.com/visiontools

Introduction

Object recognition and instance segmentation are fundamental tasks of computer vision.

Applications range from self-driving cars, robots, driving and sorting workpieces. Industrial
production defect detection, recycling, smart city, traffic analysis and much more.

The fields of object recognition have made many advances in recent years. As a rule, the
performance in these benchmarks is summarized with a number for all measurement
methods. This number combined usually determines the mean average precision, also
called mAP - mean average precision.

However, a determined mAP has several weaknesses, not least because of the complexity
of the measurement itself.

It is classified within a precision-recognition curve for detections at a certain threshold for
overlap with a correctly classified truth , the GroundTruth (GT). The GT is usually always
averaged over all classes.

Starting with the well-known COCO data set, this approach became the standard. Mostly a
mAP is determined over 10 IOU threshold values within intervals of 0.5 to 0.95 to generate a
final MAP. So as an example a threshold value from 0.5 = 5% to 0.95 i.e. 95%.

The complexity of this metric presents a particular challenge when we want to analyze the
errors in our object detectors, since the error types are interrelated, making it very difficult to
estimate how much each error type affects the mAP.

Furthermore, by optimizing for mAP alone, we may unintentionally underestimate the
underestimate the relative importance of error types, which can vary depending on the
application.

For example, when detecting an object in a robot, correct classification is arguably more
important initially than box localization.

In contrast, precise localization can be critical for robotic gripping, where even minor
mislocalization can lead to faulty mechanical operation.

REBOTNIX VISIONTOOLS Model Analyzer, starting with version 1.6.0, provides a set of
tools to identify detection and segmentation errors to solve these problems.

The analyses include the following sources of error.

1) The grouping of multiple defect types so that comparisons can be made at a
glance.

2) Fully isolate each type of error so that there are no confounding variables
that can influence a conclusion.

3) Do not require dataset specific annotations to allow comparisons between different
datasets.

4) Include all predictions of a model, since considering since considering only a
subset hides information.

5) Enable a finer analysis so that the sources of error can be
sources of error can be isolated.

Why we need a new analytics tool.

There are many papers analyzing object and instance segmentation faults, but few provide a
useful summary of all faults in a model, and none have all the desirable properties we listed
above.

The COCO evaluation toolkit attempts to meet the requirement by plotting errors in terms of
their impact on the precision-recognition curve. This allows all detections to be used at once,
since the precision-recall curve implicitly weights each error based on its confidence.

However, the COCO Toolkit generates graphs with each of the precision-recall curves, which
takes a considerable amount of time and thus makes it difficult to present a complex simple
comparison.

Perhaps the most critical problem, however, is that the COCO eval toolkit computes errors
progressively, which can lead to incorrect conclusions. Finally, the toolkit requires manual
annotations that are available for COCO but not necessarily for other datasets as yet
unknown. For example, if from a factory A records are ported to another production site
factory B. But factory B has minimal different dimensions than in the first location of factory
A.

In parallel, we attempt to find an upper bound for AP on these datasets and addresses
specific issues with the COCO toolkit. However, this final error reporting is still based on the
same progressive scheme of the COCO toolkit.

The Model Analyzer addresses all 5 goals in its analysis, providing a compact but detailed
summary of object detection and instance segmentation errors. Each type of error can be
represented as a single meaningful number, making it compact enough to fit in a clear table.

We also weight defects based on their impact on overall performance, carefully avoiding the
confounding factors present in a MAP.

In addition, the approach is modular enough that the same set of faults can be used for a
finer analysis. The end result is a compact, expressive error set that can be used for all
existing models as well as all existing models that are trained with any neural network,
whether that model is based on CNN-based object detection or on instance segmentation.

With this tool we would like to justify design decisions quantitatively to the chosen model with
a meaningful report.

Tools

In object recognition and instance segmentation, one metric is primarily used to assess
performance: mean average precision (mAP). While mAP summarizes the performance of a
model succinctly performance of a model in a number. It is difficult to separate mAP when
there is an error in object detection and instance segmentation.

A False Positive can be a double detection, a misclassification, a mislocalization, a
background confusion, or even both a misclassification and a mislocalization. Similarly, a
false negative can be a completely missed ground truth, or the potentially correct prediction
could simply be misclassified or mislocalized.

These types of errors can have very different effects on mAP, which makes it
difficult to diagnose problems with a model based on mAP alone. There is a simple way to
determine the significance of a particular error to the overall mAP by simply fixing that error
and observing the resulting change in mAP.

We define defects such that fixing all defects still results in 100 mAP, but we weight each
error individually, based on the performance of the original model. This has the advantage
that confidence and false negatives are included in the calculation, while the magnitudes of
the individual error types remain comparable.

Calculation of mAP

Before defining error types, we focus on defining mAP to understand what can cause
degradation. To calculate the mAP, we first obtain a list of predictions for each image by the
detector.

Each ground truth in the image is then matched with at most one detection. To be
considered a positive match, the detection must be of the same class as the ground truth
and have an IoU overlap greater than a certain threshold which we set to 0.5 unless
otherwise specified.

When multiple detections are considered, the detection with the largest overlap is selected
as true-positive, while all others are considered false-positive.

Once each detection matches a ground truth (true positive) or not (false positive), all
detections from each image in the dataset are collected and sorted by descending
confidence. Then, the cumulative precision and cumulative recall over all detections are
calculated as follows:

For all detections with a confidence ≥ c, Pc is the precision, Rc is the recall, T Pc
the number of true positives, and FPC the number of false positives. NGT denotes the
number of GT examples in the current class.

Define error types

When examining this calculation, there are 3 ways in which our detector can affect mAP:
Outputting false positives during the matching step, not outputting true positives (i.e. false
negatives), and false calibration (i.e. outputting a higher confidence for a false positive than
for a true positive)..

Main Error Types To create a meaningful distribution of errors that captures the
components of mAP, we rank all false positives and false negatives in the model of 6 types
(see Fig. 1). Note that for some error types (classification and localization).

We use IoU max to denote the maximum IOU overlap of a false positive with a ground truth
of the given category. The IoU threshold for the foreground is denoted as tf and the threshold
for the background is denoted as tb,
which are set to 0.5 and 0.1 , respectively, unless otherwise specified.

1. Classification Error
a. Cls

GT of the wrong class (i.e. correctly located but incorrectly classified)

2. Localization Error
a. Loc Class (i.e., correctly classified but incorrectly localized)

3. Both Cls and Loc Error
a. tb ≤ IoUmax ≤ tf for GT of the wrong class

(d. h., misclassified and incorrectly localized)

4. Duplicate Detection Error
a. Dupe value

GT is in the correct class, but another detection with a higher score already
matches this GT (i.e., it would be correct if not for a detection with a higher
score).

5. Background Error
a. Bkg
b. The background was detected as foreground. There was a detectin where

there is no groundtruth.

6. Missed GT Error
a. Miss

All unrecognized ground truth (false negatives) not already identified by
classification or localization errors.

Ideally, we would like to have a comprehensive number that indicates how each type of error
affects the overall performance of the model. In other words, for each error type, we would
like to ask how much that error category affects the performance of my model.

To answer this question, we can consider what the model's performance would be if it had
not made this error, and how mAP would have changed as a result. To this end, for each
error we need to define a corresponding target that fixes that error.

For example, if a target describe how to turn some false positives into, we could call that
after applying the target the calculated AP as APo and then compare it to the value AP to
determine the impact of the target (and corresponding error) on performance.

We know that we have covered all the errors in the model when applying them all together
gives 100 mAP. In other words, given is the formula O = {o1, . . . , on}:

Referring to the definition of AP, this means that to satisfy Equation 3, the targets used
together resolve all false positives and false negatives.

1. Classification

Corrects the class of the discovery (making it a true positive).

2.Localization

Set the localization of the detection to the localization of the GT (making it a true positive). If
duplicate detection would occur this way, suppress the detection with the lower score.

3. Cls and Loc

Since we cannot be sure which GT the detector was trying to hit with, we suppress the false
positive detection.

4. Duplicate Detection

Suppress duplicate detection.

5.Background

Suppress the detection of the background.

6. Missed GT Target:

Decreases the number of GT (NGT) in the MAP calculation by the number of missed ground
truth. This has the effect of stretching the precision-recall curve over a higher recall,
essentially acting as if the detector would be just as precise with the missing GT. The
alternative to this would be to add new detections, but it is not clear what the score for these
new detections should be so that it does not introduces nuisance variables. We discuss this
choice further in the Appendix.

Other types of errors

While the previously defined types fully account for all errors in the model.

model, the definition of errors does not clearly distinguish between false positive and
negative errors (since cls, loc, and missed errors can all capture false negative errors).

There are cases where a clear separation would be useful, so for these cases we define two
separate error types by the target that would deal with each of these errors.

1. false-positive: suppression of all false-positive detections.
2. false-negative: sets NGT to the number of true positive detections.

Both targets together add up to 100 mAP, like the previous 6 targets, but they bind the errors
in a different way.

2.3 Limitations in the stepwise calculation of errors

Note that we are careful to compute the errors one at a time (i.e., each AP starts with the AP
where no errors were specified).

It will probably never be possible to correct all the localization errors and then start working
on the classification errors - there will always be a certain number of errors left in each
category. For these reasons, we avoid calculating the errors step by step.

Analysis

We demonstrate the generality and usefulness of our analysis toolbox through detailed
analyses for various object detection and instance segmentation models, as well as for
various data and annotation sets. We also compare errors based on general ground truth
properties, such as object size, and find a number of useful insights. To further explain
complicated error cases, we provide detailed analysis for specific error types. All analysis
methods used in this paper are available in VISIONTOOLS.

Models

We choose different object detection and instance segmenters based on their ubiquity and/or
unique qualities, which allow us to explore trade-offs between different approaches and gain
different insights.

We use M-R-CNN as a baseline, as many other approaches are built on the standard
R-CNN framework.

We additionally include three such models: Hybrid Task Cascades (HTC),
TridentNet, and Mask Scoring R-CNN.

We include HTC due to its strong performance, as it is the winner of the 2018 COCO
Challenge.

Finally, we conclude MS R-CNN as a method that specifically focuses on fixing
calibration-based errors. Unlike the two-stage R-CNN approaches, we also include three
single-stage approaches, which are suitable for representing real-time models.

Datasets

We present our central model overarching analysis on MS-COCO, a widely used and active
benchmark. Furthermore, we aim to show the power of our toolbox by including three
additional datasets.

Validation of design decisions

The authors of each new object detector or instance segmenter make design decisions that
they claim affect the performance of their model in different ways. While the goal is almost
always to increase overall MAP, the question is whether the intuitive justification for a design
choice is warranted with increased performance.

Comparison of object attributes for fine analysis.

To compare performance for different object attributes such as scale or aspect ratio, the
typical approach is to compute mAP on a subset of the detections and ground truth that have
the specified attributes.

Missing ground truths, a major problem with densely annotated datasets such as cityscapes.
The key challenge with cityscapes is the presence of many small objects, which are
notoriously difficult to detect with modern algorithms. On the other hand, the challenge is the
lack of ground truth because the detections cannot be properly classified.

This is probably due to the enormous number of classes and the large data set. The trend
that densely annotated datasets prone to missing ground truth are also evident in the
false-positive and false-negative.

Unavoidable errors

We have found that a large portion of background and localization errors can simply be due
to setting an incorrect or uncommented ground truth. Upon closer examination of the most
important errors we find that many of the most certain errors are in fact this conclusion due
to an oversight in the way ignored detections are handled.

Conclusion

In this document, we have identified meaningful defect types and a way to link and evaluate
these defect types with overall performance.

We then created the resulting framework in VISIONTOOLS to independently evaluate
decisions within the analysis so that the performance of object attributes can be compared.
Likewise, we show the properties of different datasets in their prevalence and their
erroneous reason annotations.

VISIONTOOLS model analyzers include methods for isolating and improving recognition
errors. Visual interpretability in design decisions of a neural algorithm can be used to provide
clearer evidence of the strengths and weaknesses of the model being trained.

References

COCO Analysis Toolkit: http://cocodataset.org/#detection-eval, accessed: 2020-03-01 2, 4, 7
2. Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: Yolact++: Better real-time instance segmentation.
arXiv:1912.06218 (2019) 9, 10, 11
3. Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: Yolact: real-time instance segmentation. In: ICCV
(2019) 9, 11
4. Borji, A., Iranmanesh, S.M.: Empirical upper-bound in object detection and more.
arXiv:1911.12451 (2019) 2, 3, 7, 14
5. Chen, K., Pang, J., Wang, J., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Shi, J., Ouyang,
W., et al.: Hybrid task cascade for instance segmentation. In: CVPR (2019) 9, 10
6. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U.,
Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In:
CVPR (2016) 1, 9, 12
7. Divvala, S.K., Hoiem, D., Hays, J.H., Efros, A.A., Hebert, M.: An empirical study of context
in object detection. In: CVPR (2009) 2 8. Dollar, P., Wojek, C., Schiele, B., Perona, P.:
Pedestrian detection: A benchmark. In: CVPR ´ (2009) 1 9. Dong, H., Yang, G., Liu, F., Mo,
Y., Guo, Y.: Automatic brain tumor detection and segmentation using u-net based fully
convolutional networks. In: MIUA (2017) 1
8 Tide.sk Model GT toolkit

